Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.600
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612462

RESUMO

An increase in the level of nitric oxide (NO) plays a key role in regulating the human cardiovascular system (lowering blood pressure, improving blood flow), glycemic control in type 2 diabetes, and may help enhance exercise capacity in healthy individuals (including athletes). This molecule is formed by endogenous enzymatic synthesis and the intake of inorganic nitrate (NO3-) from dietary sources. Although one of the most well-known natural sources of NO3- in the daily diet is beetroot (Beta vulgaris), this review also explores other plant sources of NO3- with comparable concentrations that could serve as ergogenic aids, supporting exercise performance or recovery in healthy individuals. The results of the analysis demonstrate that red spinach (Amaranthus spp.) and green spinach (Spinacia oleracea) are alternative natural sources rich in dietary NO3-. The outcomes of the collected studies showed that consumption of selected alternative sources of inorganic NO3- could support physical condition. Red spinach and green spinach have been shown to improve exercise performance or accelerate recovery after physical exertion in healthy subjects (including athletes).


Assuntos
Celosia , Diabetes Mellitus Tipo 2 , Nitratos , Humanos , Nitratos/farmacologia , Exercício Físico , Controle Glicêmico , Óxido Nítrico , Suplementos Nutricionais
2.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602592

RESUMO

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Assuntos
Nitratos , Setaria (Planta) , Espécies Reativas de Oxigênio , Nitratos/farmacologia , Setaria (Planta)/genética , Peróxido de Hidrogênio , Cloreto de Sódio , Oxigênio , Transdução de Sinais , Perfilação da Expressão Gênica , Nitrogênio
3.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542677

RESUMO

This study examined the effect of creatine nitrate and caffeine alone and combined on exercise performance and cognitive function in resistance-trained athletes. In a double-blind, randomized crossover trial, twelve resistance-trained male athletes were supplemented with 7 days of creatine nitrate (5 g/day), caffeine (400 mg/day), and a combination of creatine nitrate and caffeine. The study involved twelve resistance-trained male athletes who initially provided a blood sample for comprehensive safety analysis, including tests for key enzymes and a lipid profile, and then performed standardized resistance exercises-bench and leg press at 70% 1RM-and a Wingate anaerobic power test. Cognitive function and cardiovascular responses were also examined forty-five minutes after supplementation. Creatine nitrate and caffeine that were co-ingested significantly enhanced cognitive function, as indicated by improved scores in the Stroop Word-Color Interference test (p = 0.04; effect size = 0.163). Co-ingestion was more effective than caffeine alone in enhancing cognitive performance. In contrast, no significant enhancements in exercise performance were observed. The co-ingestion of creatine nitrate and caffeine improved cognitive function, particularly in cognitive interference tasks, without altering short-term exercise performance. Furthermore, no adverse events were reported. Overall, the co-ingestion of creatine nitrate and caffeine appears to enhance cognition without any reported side effects for up to seven days.


Assuntos
Cafeína , Nitratos , Humanos , Masculino , Cafeína/farmacologia , Cognição , Creatina/farmacologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Exercício Físico , Nitratos/farmacologia
4.
Environ Sci Pollut Res Int ; 31(10): 15946-15957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308781

RESUMO

Nitrogen forms can affect metal accumulation in plants and tolerance to metals, but a few published studies on the effects on Cu toxicity and Cu accumulation in plants are scarce. Thus, the objective of this study was to evaluate the responses of Liriodendron chinense to different nitrogen forms, by the oxidative stress, antioxidant enzymes system, GSH-AsA cycle, Cu uptake, translocation, and accumulation under Cu stress. We found that Cu-induced growth inhibiting was alleviated by added exclusive NO3--N. Adding N as NH4+-N with or without NO3--N was aggravated as evidenced by significantly elevated malonaldehyde (MDA) and hydrogen peroxide (H2O2) compared to N-Null. Cu exposure and adding NH4+-N inhibited superoxide dismutase activity, but remarkably stimulated the activities of catalase and peroxidase, the efficiency of glutathione-ascorbate (GSH-AsA) cycle, and the activity of glutathione reductase and nitrate reductase, with respect to the control. However, adding exclusive NO3--N progressively restored the alteration of antioxidant to prevent Cu-induced oxidative stress. Additionally, adding exclusive NO3--N significantly promoted the Cu uptake and accumulation in roots, but reduced Cu concentration in leaves, accompanied by the inhibited Cu translocation factor from roots to shoots by 36.7%, when compared with N-Null. Overall, adding NO3--N alleviated its Cu toxicity by preventing Cu-induced oxidative stress and inhibiting Cu translocation from roots to shoots, which provides an effective strategy for phytostabilization in Cu-contaminated lands.


Assuntos
Cobre , Liriodendron , Cobre/toxicidade , Antioxidantes/metabolismo , Nitratos/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Nitrogênio/farmacologia , Raízes de Plantas/metabolismo
5.
Plant Physiol Biochem ; 207: 108416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354528

RESUMO

Silicon (Si) and selenium (Se) can improve the tolerance of plants to NaCl-induced salt stress. However, few studies are available on their regulatory effects on plants' tolerance to calcium nitrate stress, which often occurs in protected facilities, causing secondary soil salinization. In this study, we report the effects of Si (6 mM) and Se (20 µM) applied separately or in combination on the growth, photosynthesis, oxidative damage, and nitrogen metabolism of tomato plants, as well as fruit quality under calcium nitrate stress. The results showed that applications of Si or Se alone or in combination improved the plant growth and photosynthetic performance and reduced oxidative damage of the stressed plants. Applications of Si and Se did not decrease the calcium accumulation in leaves of the stressed plants. Under calcium nitrate stress, the concentrations of NO3-, NO2- and NH4+ in leaves were significantly increased, while the activities of nitrogen assimilation-related enzymes (including nitrate reductase, nitrite reductase, glutamine synthase, glutamine-2-oxoglutarate aminotransferase and glutamate dehydrogenase) were decreased. Applications of Si and Se, especially their combined treatment, decreased the NO3-, NO2-, and NH4+ concentrations and enhanced the activities of nitrogen assimilation-related enzymes in the stressed plants. Applied Si and Se also decreased the nitrate and titratable acid concentrations and increased vitamin levels in tomato fruits under calcium nitrate stress. It is suggested that Si and Se improved the tomato plant growth and fruit quality under calcium nitrate stress by alleviating oxidative damage and promoting both photosynthesis and nitrogen assimilation.


Assuntos
Compostos de Cálcio , Selênio , Solanum lycopersicum , Nitratos/farmacologia , Nitratos/metabolismo , Selênio/farmacologia , Silício/farmacologia , Dióxido de Nitrogênio , Glutamina , Nitrogênio/metabolismo
6.
Sci Rep ; 14(1): 2764, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308017

RESUMO

Aquatic biota are threatened by climate warming as well as other anthropogenic stressors such as eutrophication by phosphates and nitrate. However, it remains unclear how nitrate exposure can alter the resilience of microalgae to climate warming, particularly heatwaves. To get a better understanding of these processes, we investigated the effect of elevated temperature and nitrate pollution on growth, metabolites (sugar and protein), oxidative damage (lipid peroxidation), and antioxidant accumulation (polyphenols, proline) in Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. The experiment involved a 3 × 3 factorial design, where microalgae were exposed to one of three nitrate levels (5, 50, or 200 mg L-1 NO3-l) at 20 °C for 2 weeks. Subsequently, two heatwave scenarios were imposed: a short and moderate heatwave at 24 °C for 2 weeks, and a long and intense heatwave with an additional 2 weeks at 26 °C. A positive synergistic effect of heatwaves and nitrate on growth and metabolites was observed, but this also led to increased oxidative stress. In the short and moderate heatwave, oxidative damage was controlled by increased antioxidant levels. The high growth, metabolites, and antioxidants combined with low oxidative stress during the short and moderate heatwaves in moderate nitrate (50 mg L-1) led to a sustainable increased food availability to grazers. On the other hand, long and intense heatwaves in high nitrate conditions caused unsustainable growth due to increased oxidative stress and relatively low antioxidant (proline) levels, increasing the risk for massive algal die-offs.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Antioxidantes/metabolismo , Nitratos/farmacologia , Microalgas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Prolina/farmacologia
7.
Sci Rep ; 14(1): 4962, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424121

RESUMO

Microplastics are exotic pollutants and are increasingly detected in soil, but it remains poorly understood how microplastics impact soil and plant systematically. The present study was conducted to evaluate the effects of polyvinyl chloride microplastics (PVC-MPs) on wheat seedlings performance and soil properties. Under the stress of PVC-MPs, no new substance and functional groups were generated in soil by X-ray diffraction and the fourier transform infrared spectroscopy analyses, whereas the diffraction and characteristic peaks and of soil was affected by PVC-MPs. Wheat seedlings shoot biomass and soil nitrate nitrogen were significantly inhibited by PVC-MPs. Chlorophylls were not significant affected by PVC-MPs. Superoxide dismutase, catalase, and peroxidase activities in wheat seedlings increased, while malondialdehyde and proline contents decreased significantly. Redundancy analysis displayed that wheat seedlings traits can be largely explained by soil nitrate nitrogen. Our results indicate that PVC-MPs have more significant influence on soil structure than on soil substance composition. Moreover, even though antioxidant enzyme activities were improved to respond the stress of PVC-MPs, wheat seedlings are not severely impacted by PVC-MPs. Besides, soil nitrate nitrogen is the main factor on wheat seedlings performance and wheat seedlings are prone to ensure the root growth under the stress of PVC-MPs.


Assuntos
Microplásticos , Plásticos , Plásticos/farmacologia , Triticum , Nitratos/farmacologia , Plântula , Cloreto de Polivinila , Solo/química , Antioxidantes/farmacologia
8.
Physiol Plant ; 176(1): e14219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380723

RESUMO

Nitrogen can be taken up by trees in the form of nitrate, ammonium and amino acids, but the influence of the different forms on tree growth and development is poorly understood in angiosperm species like Populus. We studied the effects of both organic and inorganic forms of nitrogen on growth and wood formation of hybrid aspen trees in experimental conditions that allowed growth under four distinct steady-state nitrogen levels. Increased nitrogen availability had a positive influence on biomass accumulation and the radial dimensions of both xylem vessels and fibers, and a negative influence on wood density. An optimal level of nitrogen availability was identified where increases in biomass accumulation outweighed decreases in wood density. None of these responses depended on the source of nitrogen except for shoot biomass accumulation, which was stimulated more by treatments complemented with nitrate than by ammonium alone or the organic source arginine. The most striking difference between the nitrogen sources was the effect on lignin composition, whereby the abundance of H-type lignin increased only in the presence of nitrate. The differential effect of nitrate is possibly related to the well-known role of nitrate as a signaling compound. RNA-sequencing revealed that while the lignin-biosynthetic genes did not significantly (FDR <0.01) respond to added NO3 - , the expression of several laccases, catalysing lignin polymerization, was dependent on N-availability. These results reveal a unique role of nitrate in wood formation and contribute to the knowledge basis for decision-making in utilizing hybrid aspen as a bioresource.


Assuntos
Compostos de Amônio , Populus , Madeira/metabolismo , Árvores/fisiologia , Lignina/metabolismo , Nitratos/farmacologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Populus/metabolismo , Compostos de Amônio/metabolismo
9.
Biochem Soc Trans ; 52(1): 279-289, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385536

RESUMO

Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.


Assuntos
Acoplamento Neurovascular , Humanos , Acoplamento Neurovascular/fisiologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Suplementos Nutricionais , Cognição
10.
Free Radic Biol Med ; 215: 25-36, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403254

RESUMO

OBJECTIVES: A systematic review with meta-analysis was completed to study the effects of dietary inorganic nitrate (NO3-) oral ingestion from vegetables and salts on blood pressure responses during and following exercise. BACKGROUND: NO3- is a hypotensive agent with the potential to reduce blood pressure peaks during exercise and amplify exercise-induced hypotensive effects. Several randomized and controlled trials have investigated the effects of NO3- on hemodynamic responses to physical exercise, however this still has yet to be studied systematically. METHODS: The searches were conducted on EMBASE, Medline, and SPORTSDiscus databases. The study included masked randomized controlled trials (RCTs) with participants ≥18 years old. The NO3-intervention group received at least 50 mg NO3-/day with similar sources amid NO3- and placebo conditions. Included studies reported systolic blood pressure (SBP) or diastolic blood pressure (DBP) values during or following exercise performance. RESULTS: 1903 studies were identified, and twenty-six achieved the inclusion criteria. NO3- daily dosages ranged from 90 to 800 mg/day. Throughout exercise, SBP had smaller increases in the NO3- group (-2.81 mmHg (95%CI: -5.20 to -0.41), p=0.02. DBP demonstrated lower values in the NO3- group (-2.41 mmHg (95%CI: -4.02 to -0.79), p=0.003. In the post-exercise group, the NO3- group presented lower SBP values (-3.53 mmHg (95%CI: -5.65 to 1.41), p=0.001, while no changes were identified in DBP values between NO3- and placebo groups (p=0.31). Subgroup meta-analysis revealed that SBP baseline values, exercise type, duration of NO3- ingestion, and its dosages mediated blood pressure responses during and following exercise. CONCLUSIONS: NO3- ingestion prior to exercise attenuated the increases in SBP and DBP during exercise, and increased the decline in SBP after exercise. These results are dependent on factors that moderate the blood pressure responses (e.g., health status, type of exercise, resting blood pressure values).


Assuntos
Hipertensão , Nitratos , Humanos , Adolescente , Pressão Sanguínea , Nitratos/farmacologia , 60460 , Anti-Hipertensivos/farmacologia , Exercício Físico , Hipertensão/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Chemosphere ; 350: 141090, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169199

RESUMO

Nitrate pollution in fresh water is becoming increasingly serious. In this study, the effects of temperature and graphene oxide materials on the potential functions of denitrification communities in lake sediments were investigated by metagenome. The addition of graphene oxide significantly affected the abundance of denitrification genes such as Nap, Nos, and enhanced the contribution of Pseudomonas, making low temperature and material addition conducive to the denitrification process. Module network implied that low temperature increased the centrality of denitrification in community functions. At low temperatures, graphene oxide enhanced community anabolism by stimulation organic carbon consumption and regulating the gene abundance in the citric acid cycle and the semi-phosphorylation Entner-Doudoroff, thus possibly stimulating extracellular polymeric substances (EPS) synthesis and secretion. In addition, graphene oxide may also regulate the transfer of reducing electrons from NADH to denitrifying enzymes by affecting the gene abundances of complex I and complex IV.


Assuntos
Desnitrificação , Grafite , Microbiota , Temperatura , Lagos , Nitratos/farmacologia , Respiração Celular , Nitrogênio/farmacologia
12.
J Plant Physiol ; 294: 154183, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295651

RESUMO

Because its impact in plant development and growth and its interaction with Na+ and Cl-, the supply of different N-forms to crops can be an easy-to-use tool with effective results on salinity tolerance. Here the effect of four N-NO3-/N-NH4+ ratios (mM; 2/0, 1.6/0.4, 0.4/1.6, 0/2) on adaptation to salt conditions (15 mM NaCl in a first experiment and 40 mM NaCl in a second experiment) was studied in young lettuce (cv "Summer wonder") plants. The experiments were carried out in greenhouse and under hydroponics conditions. The results show that this cultivar tolerates and adapts to moderate salinity by deploying several structural and physiological mechanisms; (i) increasing allocation of biomass to the root, (ii) increasing root Na+ uptake and storing it in the shoot and root tissues, (iii) increasing intrinsic water use efficiency and (iv) increasing root N and P uptake. The beneficial effect of salt exposure on growth was greater when the predominant N-form was N-NO3-. These plants with higher tissue N-NO3- concentration, decreased Cl- uptake and shoot and root Cl- concentration. Regardless of salt conditions, plants with a high proportion of N-NH4+ (1.6 mM) and a low proportion of N-NO3- (0.4 mM) had a greater growth and nitrogen use efficiency, that was associated with the improved uptake of nutrients, and the maintenance of water status.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/farmacologia , Alface , Cloreto de Sódio/farmacologia , Salinidade , Água , Raízes de Plantas , Nitrogênio/farmacologia
13.
Biol Trace Elem Res ; 202(3): 1009-1019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37335444

RESUMO

To study the species of lanthanum (III) nitrate (La[NO3]3) dispersed in cell media and the effect on the osteoblast differentiation of bone marrow stroma cells (BMSCs). Different La-containing precipitations were obtained by adding various concentrations of La(NO3)3 solutions to Dulbecco's modified Eagle medium (DMEM) or DMEM with fetal bovine serum (FBS). A series of characterisation methods, including dynamic light scattering, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and protein quantification were employed to clarify the species of the different La-containing precipitations. The primary BMSCs were isolated, and the cell viability, alkaline phosphatase activity, and the formation of a mineralised nodule of BMSCs were tested when treated with different La-containing precipitations. The La(NO3)3 solutions in DMEM could form LaPO4, which exits in the particle formation, while the La(NO3)3 solutions in DMEM with FBS could form a La-PO4-protein compound. When treated with La(NO3)3 solutions in DMEM, the cell viability of the BMSCs was inhibited at the concentrations of 1, 10, and 100 µM at 1 day and 3 days. Meanwhile, the supernatant derived from the La(NO3)3 solutions in DMEM did not affect the cell viability of the BMSCs. In addition, the precipitate derived from the La(NO3)3 solutions in DMEM added to the complete medium inhibited the cell viability of the BMSCs at concentrations of 10 µM and 100 µM. When treated with La(NO3)3 solutions in DMEM with FBS, the derived precipitate and supernatant did not affect the cell viability of the BMSCs, except for the concentration of 100 µM La(NO3)3. The La-PO4-protein formed from the La(NO3)3 solutions in DMEM with FBS inhibited the osteoblast differentiation of BMSCs at the concentration of 1 µM La(NO3)3 (P < 0.05) but had no effect on either the osteoblast differentiation at the concentrations of 0.001 and 0.1 µM or on the formation of a mineralised nodule at all tested concentrations of La(NO3)3. Overall, La(NO3)3 solutions in different cell culture media could form different La-containing compounds: La-PO4 particles (in DMEM) and a La-PO4-protein compound (in DMEM with FBS). The different La-containing compounds caused different effects on the cell viability, osteoblast differentiation, and the formation of a mineralised nodule of the BMSCs. The La-containing precipitation inhibited the osteoblast differentiation by inhibiting the expression of osteoblast-related genes and proteins, providing a theoretical basis for clinical doctors to apply phosphorus-lowering drugs such as lanthanum carbon.


Assuntos
Células-Tronco Mesenquimais , Nitratos , Camundongos , Animais , Nitratos/farmacologia , Nitratos/metabolismo , Lantânio/farmacologia , Lantânio/metabolismo , Osteogênese , Células Cultivadas , Diferenciação Celular , Células da Medula Óssea , Proliferação de Células , Células Estromais
14.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37823770

RESUMO

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Assuntos
Hipertensão Induzida pela Gravidez , Apneia Obstrutiva do Sono , Humanos , Gravidez , Feminino , Ratos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Hipertensão Induzida pela Gravidez/etiologia , Hipertensão Induzida pela Gravidez/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Nitritos/metabolismo , Nitritos/farmacologia , Vasodilatação , Endotelinas/metabolismo , Endotelinas/farmacologia , Hipóxia/metabolismo , Receptor de Endotelina A/metabolismo , Artérias Mesentéricas , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Endotélio Vascular
15.
Nitric Oxide ; 142: 1-15, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981005

RESUMO

Dietary nitrates (NO3-) are naturally occurring compounds in various vegetables, especially beetroot, which is mainly supplemented in the form of BRJ. Dietary nitrates (NO3-) play a crucial function in human physiology. On consumption, nitrates (NO3-) undergo a conversion process, producing nitric oxide (NO) via a complex metabolic pathway. Nitric oxide (NO) is associated with many physiological processes, entailing immune modulation, neurotransmission, and vasodilation, enabling blood vessel dilation and relaxation, which boosts blood flow and oxygen delivery to tissues, positively influencing cardiovascular health, exercise performance, and cognitive function. There are various analytical processes to determine the level of nitrate (NO3-) present in dietary sources. The impact of dietary nitrates (NO3-) can differ among individuals. Thus, the review revisits the dietary source of nitrates (NO3-), its metabolism, absorption, excretion, analytical techniques to assess nitrates (NO3-) content in various dietary sources, and discusses health effects.


Assuntos
Beta vulgaris , Nitratos , Humanos , Nitratos/farmacologia , Nitratos/uso terapêutico , Óxido Nítrico/metabolismo , Dieta , Suplementos Nutricionais , Hemodinâmica , Verduras/metabolismo
16.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967517

RESUMO

Underwater germination could risk seedling survival, suggesting the need for control through seed perception of environmental cues. These cues include diurnally alternating temperatures tied to drained soils or shallow water tables. We examined high-amplitude alternating temperatures impact on underwater germination. Besides, the conditions experimented by seeds in the soil (e.g. hydration/dehydration phases) change their germinability so we tested if osmopriming could affect underwater germination. We worked with Echinochloa colona seedlots from extensive crop fields, exposing seeds to sequential submergence and drained treatments in combination with cues that promote germination. While a 10°C difference between maximum and minimum daily temperatures maximised germination in drained conditions, higher amplitudes (>15°C) alternating temperatures promoted E. colona underwater germination under hypoxic water (pO2 <4.1kPa). KNO3 osmopriming in drained conditions promoted later underwater germination even under hypoxic water; however, PEG 6000 osmopriming induced seeds to enter secondary dormancy inhibiting underwater germination. KNO3 improved E. colona underwater germination under air-equilibrated floodwater (pO2 : 16.5-17.4kPa) yet not under hypoxic conditions. This suggests that germination can proceed in flooded nitrate-fertile soils as long as it remains aerobic. Hypoxic submergence did not inhibit the induction of hypersensitivity to light in E. colona seeds. This research expands our understanding of wetland seed germination ecophysiology, shedding light on the inducible nature of underwater germination in hydrophyte weeds.


Assuntos
Echinochloa , Germinação , Germinação/fisiologia , Echinochloa/fisiologia , Nitratos/farmacologia , Temperatura , Água/farmacologia , Sementes , Solo
17.
J Dairy Sci ; 107(1): 220-241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37690719

RESUMO

The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.


Assuntos
Leite , Nitratos , Propanóis , Feminino , Bovinos , Animais , Nitratos/farmacologia , Lactação , Gorduras na Dieta/farmacologia , Metano , Dieta/veterinária , Ingestão de Alimentos , Ração Animal/análise , Rúmen , Zea mays
18.
Free Radic Biol Med ; 211: 12-23, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092272

RESUMO

BACKGROUND: The increase in blood pressure (BP) levels in the postmenopausal period can be partly explained by the decrease in nitric oxide synthases (NOS). OBJECTIVE: To investigate the acute and one-week effects of beetroot juice nitrate-rich (BRJ-NO3-rich) ingestion on cardiovascular and autonomic performance in response to submaximal aerobic exercise in postmenopausal women with systemic arterial hypertension (SAH) who are physically inactive. METHODS: Fourteen postmenopausal women with SAH [mean (SD) age: 59(4) y; BMI (kg/m2): 29.2(3.1)] completed submaximal aerobic exercise bouts after an acute and a one-week intervention with BRJ in a placebo-controlled, randomized, triple-blind, crossover design. Participants ingested either BRJ (800 mg of NO3-) or placebo acutely and drank either BRJ (400 mg of NO3-) or placebo every day for the next six days. After two and ½ hours, they performed a session of aerobic submaximal aerobic exercise, and their systolic BP (SBP) and diastolic BP (DBP), flow-mediated dilation (FMD), heart rate (HR) recovery, and HR variability were measured. RESULTS: In the post-exercise recovery period, SBP dropped significantly in the BRJ-NO3-rich group (-9.28 mmHg [95%CI: -1.68 to -16.88] ES: -0.65, p = 0.019) compared to placebo after acute ingestion. The FMD values increased after acute BRJ-NO3-rich on post-exercise (3.18 % [0.36 to 5.99] ES: 0.87, p = 0.031). After the one-week intervention, FMD values were higher in the BRJ-NO3-rich group before (4.5 % [1.62 to 7.37] ES: 1.21, p = 0.005) and post-exercise measurements (4.2 % [1.52 to 6.87] ES: 1.22, p = 0.004) vs. placebo. HRV indices with remarkable parasympathetic modulation to heart recovered faster on the BRJ-NO3-rich group than placebo group. No between-group differences were identified in values of HR post-exercise recovery in the 30s, 60s, 120s, 180s, and 300s. CONCLUSIONS: Acute and short-term BRJ-NO3-rich ingestion may enhance cardiovascular and autonomic behavior in response to aerobic exercise in postmenopausal women diagnosed with SAH. CLINICAL TRIAL REGISTRY NUMBER: https://clinicaltrials.gov/ct2/show/NCT05384340.


Assuntos
Beta vulgaris , Hipertensão , Humanos , Feminino , Pessoa de Meia-Idade , Nitratos/farmacologia , Pós-Menopausa , Suplementos Nutricionais , Sucos de Frutas e Vegetais , Hipertensão/terapia , Exercício Físico/fisiologia , Pressão Sanguínea , Ingestão de Alimentos , Método Duplo-Cego , Estudos Cross-Over
19.
J Agric Food Chem ; 71(50): 19958-19969, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38085756

RESUMO

Nitrogen fertilization can promote rice yield but decrease resistance to sheath blight (ShB). In this study, the nitrate transporter 1.1b (nrt1.1b) mutant that exhibited less susceptibility to ShB but without compromising yield under NH4+ fertilization was screened. NRT1.1B's regulation of ShB resistance was independent of the total nitrogen concentration in rice under NH4+ conditions. In nrt1.1b mutant plants, the NH4+ application modulated auxin signaling, chlorophyll content, and phosphate signaling to promote ShB resistance. Furthermore, the findings indicated that NRT1.1B negatively regulated ShB resistance by positively modulating the expression of H+-ATPase gene OSA3 and phosphate transport gene PT8. The mutation of OSA3 and PT8 promoted ShB resistance by increasing the apoplastic pH in rice. Our study identified the ShB resistance mutant nrt1.1b, which maintained normal nitrogen use efficiency without compromising yield.


Assuntos
Transportadores de Nitrato , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Mutação , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fertilização , Nitratos/farmacologia , Nitratos/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Nat Commun ; 14(1): 8249, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086813

RESUMO

Nitrate ammonification is important for soil nitrogen retention. However, the ecology of ammonifiers and their prevalence compared with denitrifiers, being competitors for nitrate, are overlooked. Here, we screen 1 million genomes for nrfA and onr, encoding ammonifier nitrite reductases. About 40% of ammonifier assemblies carry at least one denitrification gene and show higher potential for nitrous oxide production than consumption. We then use a phylogeny-based approach to recruit gene fragments of nrfA, onr and denitrification nitrite reductase genes (nirK, nirS) in 1861 global terrestrial metagenomes. nrfA outnumbers the nearly negligible onr counts in all biomes, but denitrification genes dominate, except in tundra. Random forest modelling teases apart the influence of the soil C/N on nrfA-ammonifier vs denitrifier abundance, showing an effect of nitrate rather than carbon content. This study demonstrates the multiple roles nitrate ammonifiers play in nitrogen cycling and identifies factors ultimately controlling the fate of soil nitrate.


Assuntos
Bactérias , Nitratos , Nitratos/farmacologia , Bactérias/genética , Nitrito Redutases/genética , Nitrito Redutases/farmacologia , Solo , Ecossistema , Nitrogênio/farmacologia , Desnitrificação , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...